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Abstract. By analogy to the continuous Painlevé-II equation, we present particular solutions of
the discrete Painfevé 11 (d¢-pyr) equation. These solutions are of a rational and special function
(Airy) type. Our analysis is based on the bilinear formalism that allows us to obtain the -
function for ¢-pg. Two different forms of bilinear d-Py are obtained and we show that they can
be related by a simple gauge transformation.

The (continuous) Painlevé equations are known as paradigms of integrability [1]. Their
integrability is of a special type in the sense that it does not lead to the solution being written
in terms of known functions. In fact, the general solution can be obtained only through IST
methods (which, in essence, reduce the Painlevé equations to a linear integrodifferential
equation) [2]. Although the general solution to the Painlevé equations is essentially
transcendental, simple solutions do also exist. In particular, for those Painlevé equations
that contain free parameters it is possible to find values of these parameters for which a
solution can be obtained in terms of special functions [3]. It must be pointed out that
this ‘elementary’ solution does not possess the full dimensionality of integration constants.
Typically, the Painlevé equations have (for special values of their parameters) solutions
involving one integration constant and which are given in terms of special functions or
solutions that do not involve any integration constant and are usually rational expressions.
Let-us illustrate this in the case of the second Painlevé equation {Py)

w’ =2 + 2w +a. (1

It is well known that whenever the parameter o is half-integer, Py possesses solutions
that can be expressed in terms of Airy functions, while for integer o, Py has solutions of
rational type. Thus, when & = 1/2 we have w = —A'/A, with A being a solution of
A" 4+ (x/2)A = 0. The simplest rational solution is obtained for & = 0 in which case we
find w = 0. The construction of solutions for higher values of the parameter can be based
on the auto-Bécklund transform of Py [4], which relates the solutions of Py corresponding
to values o and @ + 1:

1420
2wi(a) + 2wy +x

wle+ 1) = ~wlx) — (2)
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The parity relation w{—a) = —w(x) allows us to reach the negative values of the parameter
. Similar results exist for the higher Painlevé equations.

Rational solutions for the continuous Py have been obtained in [5]. The basis for
that derivation has been the bilinear expression of Py obtained from the first modified Kp
hierarchy. Starting from (1) with o = 4(N + 1), w is expressed as

w =3, log T—g—‘ 3)

where Ty is understood as an N x N determinant. The bilinear expression for Py is just
Dizy4 -y =0 (4a)
(D2 —4xD; + 4(N + Wty » v =0 (4b)
where D is the Hirota operator acting on a dot product. Its precise definition is
DF « G = (8 — 30 )F(x)G(x Y ympr = F'(x)G(x) — F(x)G'(x).

In the case of rational solutions, T corresponds to the Wronskian determinant

ao ay s an-y
a] az K] aN
W= : : ©)
ay—1 4N -+ dan=2
where the a;’s satisfy
a;c = Z(k - I)Gk..z : (6)
and
=2
G =af + Y a2 M
j=0

with ag = x, @ = 1. Equations (6) and (7) uniquely determine a. For the derivation and
final proof that the Ty, equation (5), are indeed solutions of (4), extensive use of Pliicker
relations is made. The latter, we recall, are quadratic identities between determinants, some
columns of which have been shifted.

In this paper we shall focus on the discrete equivalent of these results. As is well
known, the Painlevé equations possess discrete analogues [6,7] that are integrable in a
sense reminiscent of the continuous case: isomonodromy based on the existence of a Lax
pair [8]. Special solutions do also exist. In a series of publications [9-11] we have analysed
this problem and obtained results for the d-Ps from II to V. In what follows we shall return
to d-Pg:

U —a
1 —u?

Etu=

8

where we use the notation ¥ = u,, ¥ = up4 and u = u,_1. Note that 4 has the parity
w#(a) = —u(—a) in close analogy to the continuous case. What is known about this equation?
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In [8] we have obtained the (discrete) Miura and auto-Bécklund transformations. The former
can be written as

v=(1-mu+1)—z/2-4/4 : %)

and transforms d-Py to d-P34:

4v2 —m?

C+o+y) =

an

where m = a — §/2 and § =7 —z. The discrete Miura transform (9) is complemented by

v—yv—m
u-.———ﬁ_—g—--. (11)

This means that by eliminating » or u between (9) and (11) we can find (8) or (10)
respectively. The anto-Bécklund transformation relating u(a) to u(a — 8} is

(2a — &1 + ula))
2ua) + )1 —u(@) —z—a’

u(a — 8) = —ula) — (12)

Airy-type solutions were shown to exist. For instance, at ¢ = /2 we have 1 = —1 +A/A

where A is a solution of the discrete Airy equation: A — 24 + (z/2+8/4)A = 0. The basic
rational solution, as in the continuous case, is 1 = 0 for g = 0. From these ‘seed’ solutions
one can construct higher ones using the Bicklund transform (12).

A different approach was presented in [12] where we obtained the general Airy-type
solution of 4-P in terms of Casorati determinants, The essential tool in that approach is the
bilinear formalism: the solution to the d-Py equation is expressed as a ratio of r-functions
each of which is a Casorati determinant. However, this is a ‘top-down’ approach, starting
from the determinantal form of the solution and using determinantal (Pliicker) identities in
order to obtain the equation. This may not always be convenient. In this paper we shall
present a different treatment which is also based entirely on the bilinear formalism but
starts with the equation and proceeds to the construction of the solution. This approach is
particularly convenient for the rational solutions of d-p;; as we will show below.

Let us start with the bilinear form of d-Py;. The bilinear forms of the continuous Painlevé
equations have been presented in [13]. It was shown there that starting from equation (1)
and introdecing F, G through w = (In F/G), one can obtain a bilinearization in the form

D’F.G=0 (134)
@ —xD —a)F -G =0. B E)

(The expression is slightly different from that of (4) because of a different choice of scaling
factors.) The quantities F and G are indeed 7-functions for the continuous Py. In order to
construct the discrete analogue to (13) one must recall the relation between the parameters
of the continuous Py (1) and those of d-P;r (8). In fact, in order to obtain the continuous
limit of d-Py; we must take @ = —e’, z = 2+ €%x and let € — 0 while z becomes ew. We
shall not present a fully systematic approach of the bilinearization of d-Py here. It is clear
that the continuous D’s must be replaced by the discrete shift operators e, the action of
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which is given by ePf - g = f(n+ 1)g(n — 1). To make a long story short, the bilinear
form of d-Py reads as

(coshD—1)f+g=0 (14a)
(sinh 2D — zsinhD —a)f - g =0. (14b)

Equations (14) can be written in a more explicit way as

Fg+fE—2fg=0 . _ (15a)
T3-2f—2(Fg— [ —2afg=0. ’ (156)
The relation of the nonlinear variable ¥ to f and g is
fe Iz o
t=—==1=1-=. 16
fe re (18)

The resemblance to the continuous case is striking, In fact, one can check that at the
continuous limit, (14) goes over to (13). Moreover, starting with (9) one can obtain a
nonlinear equation for the quantity i that turns out to be exactly the d¢-Py (8). In order to
assign a particular meaning to the quantities f and g it is interesting to examine the Miura
transform (9). It can be written

v=B8 s 17)
g

Next we use two distinct symmetries of our equations. First, (8) is invariant under ¥ — —u,
a — —a (or, equivalently, (15) is invariant under f + g, a = —a). Rewritten in terms
of the parameter m, this means that u(m + 8/2) = —u(—(m + §) + §/2). Thus, the Miura
transform (9) can be used to construct not only the solution v corresponding to m but also
the solution v’ corresponding to —(m -+ §). Thanks to the other invariance, namely that
of (10) with respect to m — —m, this solution coincides with the solution at (m + 8).
Implementing the Miura transform we find

V== —z/2—5/4. (18)

At this stage the situation becomes clear: g is related to m = a — §/2 and f is related to
m' =a+68/2. In fact the g and f are T-functions corresponding to two consecutive values
of the parameter a with difference 8.

We now turn to the construction of the rational solutions of (14). As we have already
explained in [9], equation (8) possesses rational solutions that do not contain any free
parameters for values of the parameter a that are integer multiples of 8. Thus, when ¢ =0
we find # = 0 as a solution, while for 2 = § we obtain ¥ = &§/(z —2). In order to construct
the rational solutions for higher values of a one can use the auto-Backlund transform (12);
however, the use of z-functions leads to this result in a more natural way. Let us first rewrite
d-Py so as to introduce directly the parameters related to the continuous limit (§ = —e®):

_#@—-En+ N+
- 1—u? '

T4u (19)
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In terms of the r-functions, # can be written simply as

_ TnaIy
TN41TN

i - 1. - (20)
We start with 19 = 1 (and also 7_; = 1} and 7y = r. We then use the auto-Bicklund
transformation in order to compute the t’s for higher N’s. Starting from u(q) expressed in
terms of the known Ty, Ty—;, we obtain, from (12), u(a — &) that involves the z-functions
Tn+1, TN. We compute the quantity (u+ 1)z /z,, which, from (20) is equal t0 Tyt /Ta1,
and ty. is obtained by inspection. Thus, we obtain (v = e~3/2) )

T=nm?—-1)—4* @n
15 = ni(n® — (n® — 4) — 4n(5n* — )0 — SOv*

and so on. What is really interesting is that we can, just as in the continuous case, cast
these 7-functions in the form of a determinant. Thus, we find for 73 the expressicn

n 2v nin +2) .
T3 = 2v n?—1 8u(n + 3 — 30) (22)
n(n—2) 8u(n—1i+30) 2n(n®—4)+200°

where o is just a sign, o = 1. Higher 7’s can be (and have been) computed and cast in
the form of a Casorati determinant.

ag(n) a @mn+1) ay(n+2)
ay ax(n) at(n) asn+1) ...
T = ag(ﬂ - 1) a;(n) a4(n) a;"(n) R (23)

am—2 an—1  a5(n) as(n)

where the relation af (n, ¢) = ax(n & 1, £0) holds, and
ay(n) =n
ap = 2v
ax(n) =n* —1
a3(n) = 8v(n — 30)
as(n) = 2n(n* — 4) + 200 o o (24)
as(n) = 32y ((n + %c:)')2 - %)
ag(n) = 5(n* - 1)(:*:2 -9+ 200v2n
a7(n) = 128v (n —30)* — B(n — do} + Lv? — 20)

as(n) = l4n(n* — H(R* — 16) + 4v2(350n% — 557).
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What is Jacking at this stage is an equivalent of relations (6) and (7) that allows the
construction of the matrix elements. It is not very difficult to obtain the equivalent of
the (linear) differential relation (6} although some complications appear because of the
parity dependence of the matrix elements. We have for even &

ar(n + 1) — ap(n — 1) = 4(k — Dag—(n) (25a)
while for odd k we find
ar(n 41, =) —apln — 1, o) = 4(k — Dap_o(n, o). (25b)

However, the equivalent of the nonlinear relation (7) has not been found in the discrete case.
Still, its existence would lead only to a practical simplification. The important point is that
the z-functions (which are the fundamental objects) can be computed in an algorithmic
way. In fact, instead of using the Bécklund transform for «, equation (12), we can derive
a Bicklund relation directly for the z-functions:

TNFITN=1 = 2U2?N£N +Tytyin-N-—-2 nuz) {26)
TN+1IN=1 = QUE?NEN +Tytw(N + n+1— 21.?2). N

Next, we turn to an important question concerning the comparison of the present results
with those of our work on the Airy-type solutions of d-Py. In [12] we obtained the bilinear
expressions

Tyt =T oy — Ty (K15)
WA — 2+ (et Ty T =0 (K16)
WY = —(p( +2N) + TPy + (pr+ s K17)

and with the dependent-variable transformation
it
=ML g (K18)

T nt1
TN+t

we obtain the standard nonlinear form of d-py:

2o+ QN - D+ 200w, — AN+ Dp
o 1—w? )

Wotl + Wp—1 = (X19)

‘We remark that equation (K19) corresponds to @ = (2N <+ 1)p while the a of equation
(19) is —e*(W 4 1). The interpretation of this value of a is the following. Equation (K19),
and also (K15)+{K18), are wriiten specifically for the case of Airy-type solutions, i.e. half-
integer values of a/é8 and the zx of (K18) is associated to ¢ = (2N + [)p. In this paper,
the formalism of (15a) and (&) is quite general and does not depend on the type of solution
considered. (Only when rational solutions are considered does N have to be taken as an
integer.) If we wish to compare the bilinear expressions (K15)«K17) and (152) and (&),
(26) and (27) we must take into account the shift in N. The simplest way to do this is to
rewrite (K19) as

@Epn+ N) +2¢)w, —2(N+ L)p

3
e (K19

Wetl + Wp—1 =
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Comparing (K19) to (19) we obtain p = —¢>/2 = —1/21% and ¢ = 1 + N/2v% Next,
Iet us remark that there exists a further small difference in the definitions of the z’s in the
two papers: what is called z4,(m) in [12] corresponds in this paper to a T-function, which
we will denote by «y(m + M —~ N — 1), L.e. with the same lower index but with an upper
index (m -+ M — N — 1), so that (K18) becomes identical to our equation (20). We can now
rewrite (K15)—+(K17) in terms of the «’s:

Ky = e e — (28)
nt2 .n a1 _n+l N-—n n 142
enzifey — 2oy | T == Yy ey =0 (29)
N+n+1 N=n\ 4 on
Ky = — (1 - T) el 1 (1 + 5 )xﬁ. v (30)

Clearly, equation (29} involving only two consecutive lower indices is analogous to our
equation (15a). The difference in form between these two equations can be explained by a
gauge transformation between our 7’s and the «’s. Defining a gauge function /i we put

ey = hyti (31)

In order for w, to coincide with u, we must have A5 A5 /A%, +1#y = 1. This can be

integrated once to h’;,“ =k}, j(n — N) and then further integrated to A}, = J(n — N)g(N)
such that j(m) = J(m + 1)/J(m). Introducing the gauge %, equation (29) down-shifted
once in n becomes

_ _ N+1—-n _ -
Ry e T = 2 R T Ty + (1 + —27-—) Kty T =0 (32)

All the ¢’s factor out, and (32) coincides with (15¢) provided that a single relation which
defines the gauge function j is satisfied:

(33)

j(n—N—Z):j(n—N)(1+M).

2u2

Next, we turn to (28): up-shift it once in a, introduce £ and compare it to (26). We remark
that thanks to (33) the ratio of the j’s creates exactly the right (r — N)-dependent terms in
(26). We are left with one condition that defines ¢:

PWN+DpW -1 1
B(N)? T 2v

Finally, one can check that (30) is now identical to (27). Thus, the two bilinear formulations
of d-Py are equivalent, provided one introduces the right gauge.

In this paper we have introduced a bilinear formalism for the description of the discrete
Painlevé-II equation. This approach has turned out to be very convenient for the expression
of the rational solutions that d-Py; possesses for particular values of its parameters. From the
analysis presented, it is clear that the choice of the appropriate gauge for the description of
the equations depends crucially on the type of solutions one wishes to examine. The novel
feature concerning the rational solutions of d-Py is that they can be given in the form of
Casorati determinants, a property that is not yet fully explored even in the continuous case,
We expect that the bilinear formalism will be extremely useful in the study of the remaining
discrete Painlevé equations and will help establish a perfect parallel between the discrete
and the continuous case.

. (G4
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