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Abstract. By analogy to the continuous Painlev.5-I1 equation, we prehent particular solutions of 
the discrete Painlev6 II (d-nr) equation. These solutions are of a rational and special function 
(Airy) type. Our analysis is based on the bilinear f d i s m  that allows us to obtain the r- 
function for d.Pn. Two different forms of bilinear d-pu m obtained and we show ulal they can 
be related by a simple gauge transformation. 

The (continuous) Painlev6 equations are known as paradigms of integrability [ l ] .  Their 
integrability is of a special type in the sense that it does not lead to the solution being written 
in terms of known functions. In fact, the general solution can be obtained only through IST 
methods (which, in essence, reduce the Painlev6 equations to a linear integrodiierential 
equation) [2 ] .  Although the general solution to the Painlev6 equations is essentially 
transcendental, simple solutions do also exist. In particular, for those Painlev6 equations 
that contain free parameters it is possible to find values of these parameters for which a 
solution can be obtained in terms of special functions [3].  It must be pointed out that 
this 'elementary' solution does not possess the full dimensionality of integration constants. 
Typically, the Painlev6 equations have (for special values of their parameters) solutions 
involving one integration constant and which are given in terms of special functions or 
solutions that do not involve any integration constant and are usually rational expressions. 

Let~us illustrate this in the case of the second Painlev6 equation (PI[) 

wn = 2w3 + x w  +a .  (1) 

It is well known that whenever the parameter a is half-integer, Pn possesses solutions 
that can be expressed in terms of Airy functions, while for integer a, PI[ has solutions of 
rational type. Thus, when a = 1 /2  we have w = -A'/A, with A being a solution of 
A" + ( x / 2 ) A  = 0. The simplest rational solution is obtained for a = 0 in which case we 
find w = 0. The construction of solutions for higher values of the parameter can be based 
on the auto-Biicklund transform of Pn 141, which relates the solutions of PII corresponding 
to values a and a + 1: 

1 +2or 
w ( a  + 1 )  = - w ( a )  - 

2 w Y a )  + 2w'(a) + x .  
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The parity relation w(-01) = -w(01) allows us to reach the negative values of the parameter 
01. Similar results exist for the higher Painlev6 equations. 

Rational solutions for the continuous  PI^ have been obtained in [5]. The basis for 
that derivation has been the bilinear expression of Pn obtained from the first modified KP 
hierarcby. Starting from (1) with 01 = 4(N + l), w is expressed as 

TN+l w = a, log - 
ZN 

(3) 

where TN is understood as an N x N determinant. The bilinear expression for PII is just 

D ~ z ~ + ~  . ZN = o 
(D: - 4 x 4  + 4(N + l ) ) t ~ + i  . ZN = 0 

DF . G = (a, - a,.)F(x)G(x‘)i,,. = F’(x)G(x) - F(x)G’(x). 

(44 

(4b) 

where D is the Huota operator acting on a dot product. Its precise definition is 

In the case of rational solutions, z corresponds to the Wronskian determinant 

where the Q X ’ S  satisfy 

and 

with a0 = x ,  a1 = 1. Equations (6) and (7) uniquely determine ak. For the derivation and 
final proof that the TN, equation (5), are indeed solutions of (4), extensive use of Plucker 
relations is made. The latter, we recall, are quadratic identities between determinants. some 
columns of which have been shifted. 

In this paper we shall focus on the discrete equivalent of these results. As is well 
known,  the Painlev6 equations possess discrete analogues [6,7] that are integrable in a 
sense reminiscent of the continuous case: isomonodromy based on the existence of a Lax 
pair [8]. Special solutions do also exist. In a series of publications [9-11] we have analysed 
this problem and obtained results for the d-Ps from II to V. In what follows we shall return 
to d-Pn: 

- zu - a  
u+g=- 

1 - U 2  

where we use the notation U = U,,, si u,-I .  Note that U has the parity 
u(a) = - U ( - a )  in close analogy to the continuous case. What is known about this equation? 

U,+] and g 



Bilinear discrete Painlevi-It and its particular solutions 3543 

In [Sl'we have obtained the (discrete) Miura and auto-Biicklund transformations. The former 
can be written as 

U = ( 1  -E)(u + 1) - 2 / 2  - 6/4 (9) 

and transforms d-Pn to d-P3& 

where m = a - 6 / 2  and 6 F --z. The discrete Miura transform (9) is complemented by 

v - E - m  
U+E 

U =  

This means that by eliminating v or U between (9) and ( 1 1 )  we can find (8) or (10) 
respectively. The auto-B%Hund transformation relating u(a) to u(a - 6 )  is 

- m1 + u(a))  u(a - 6 )  = -u(a) - 
2(d(a) + 1 ) ( 1  -U@)) - z -a' 

Airy-type solutions were shown to exist. For instance, at a = 612 we have U = - 1  +X/A 
where A is a solution of the discrete Airy equation: z-ZT+(z/2+6/4)A = 0. The basic 
rational solution, as in the continuous case, is U = 0 for a = 0. From these 'seed' solutions 
one can construct higher ones using the Backlund transform (12). 

A different approach was presented in [12] where we obtained the general Airy-type 
solution of d-Pn in terms of Casorati determinants. The essential tool in that approach is the 
bilinear formalism: the solution to the d-Pu equation is expressed as a ratio of r-functions 
each of which is a Casorati determinant. However, this is a 'top-down' approach, starting 
from the determ&mtal form of the solution and using determinantal (F'liicker) identities in 
order to obtain the equation. This may not always be convenient., In this paper we shall 
present a different treatment which is also based entirely on the bilinear formalism but 
starts with the equation and proceeds to the construction of the solution. This approach is 
particularly convenient for the rational solutions of d-Pll as we will show below. 

Let us start with the bilinear form of d-P11. The bilinear forms of the continuous Painlevt 
equations have been presented in [13].  It was shown there that starting from equation (1) 
and introducing F ,  G through w = (In F J G ) ,  one can obtain a bilinearization in the form 

D ~ F .  G = o 
3 (D - x D - a ) F . G = O .  

(The expression is slightly different from that of (4) because of a different choice of scaling 
factors.) The quantities F and G are indeed r-functions for the continuous PI[. In order to 
construct the discrete analogue to (13) one must recall the relation between the parameters 
of the continuous p I ~  ( 1 )  and those of d-PlI (8). In fact, in order to obtain the continuous 
limit of d-Pn we must take a = -&!, z = 2+eZx and let E + 0 while U becomes ew. We 
shall not present a fully systematic approach of the bilinearization of d-Pn here. It is clear 
that the continuous D s  must be replaced by the discrete shift operators eo, the action of 
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which is given by eD f a  g = f (n + l)g(n - 1). To make a long story short, the bilinear 
form of d - k  reads as 

(CmhD- 1)f * g  = 0 

(sinh2D- zsinhD -a) f . g  = 0. 

Equations (14) can be written in a more explicit way as 
- 
f g + D - - f g = O ~  : 

fg - -  -Ff - z ( 7 g - B  -2nfg = 0. 
- - 
- -  

The relation of the nonlinear variable U to f and g is 

The resemblance to the continuous case is striiking. In fact, one can check that at the 
continuous limit, (14) goes over to (13). Moreover, starting with (9) one can obtain a 
nonlinear equation for the quantity U that turns out to be exactly the d-PI1 (8). In order to 
assign a particular meaning to the quantities f and g it is interesting to examine the Miura 
transform (9). It can be written 

Next we use two distinct symmetries of our equations. First, (8) is invariant under U + -U, 
a + -a (or, equivalently, (15) i’s invariant under f * g, a + -a). Rewritten in terms 
of the parameter m, this means that u(m + 612) = -u(-(m + 6 )  + 612). Thus, the Miura 
transform (9) can be used to construct not only the solution v corresponding to m but also 
the solution U’ corresponding to -(m + 6). Thanks to the other invariance, namely that 
of (IO) with respect to m + -m, this solution coincides with the solution at (m + 6). 
Implementing the Miura nansform we find 

- - 
z/2 - 614. U’=+=- ff 

ff 
At this stage the situation becomes clear: g is related to m = a - 612 and f is related to 
m’ = a + 612. In fact the g and f are z-functions corresponding to two consecutive values 
of the parameter a with difference 6. 

We now turn to the construction of the rational solutions of (14). As we have already 
explained in 191, equation (8) possesses rational solutions that do not contain any free 
parameters for values of the parameter a that are integer multiples of 6. Thus, when a = 0 
we find U = 0 as a solution, while for a = 6 we obtain U = S/(z - 2). In order to construct 
the rational solutions for higher values of a one can use the autoBacklund transform (12); 
however, the use of r-functions leads to this result in a more natural way. Let us first rewrite 
d-PE so as to introduce directly the parameters related to the continuous limit (6 = -c3): 

- u(2 - €3n) + €3(N + 1) 
u+g= 

1 - U2 
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= 

In terms of the 7-functions, u'can be written simply as 
- 
* N + ~ I N  

U = - - 1 .  
r N + l r N  

a1 az(n+ 1 )  a;(n+2) ... 
a1 az(n) aj+(n) a.&+ 1) ... 

az(n - 1) a;@) 4 4  a:(.) ... 
aj+(n-2)  a d n -  1 )  a;(n) Q(n)  ... 

(23) 

We start with 70 = 1 (and also r-I = 1) and 71 = n. We then use the autodkklund 
transformation in order to compute the 7 ' s  for higher N's .  Starting from u(a) expressed in 
terms of the known r ~ ,  r N - 1 ,  we obtain, from (12), u(a - 6 )  that involves the 7-functions 
7 ~ + , ,  7 N .  We compute the quantity (U + 1)7"jzN which, from (20) is equal to 7 ~ + l / r ~ ~ r l ,  
and 7 N + 1  is obtained by inspection. Thus, we obtain (U 5 C3I2 )  

(21) 72 = n(n2 - 1) - 4v2 

73 = n2(n2 - l)(n2 - 4)  - 4n(5nz - 8)u2 - 80u4 

and so on. What is really interesting is that we can, just as in the continuous case, cast 
these r-functions in the form of a determinant Thus, we find for r3 the expression 

3 3 73 3 15 2 3 a7(n) = 128u ((n -'p) - x ( n  - TU) + T u  - zu) 

a&) = 14n(n2 - 4)(n2 - 16) + 4v2(350n2 - 557). 
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What is lacking at this stage is an equivalent of relations (6) and (7) that allows the 
construction of the matrix elements. It is not very difficult to obtain the equivalent of 
the (linear) differential relation (6) although some complications appear because of the 
parity dependence of the matrix elements. We have for even k 

(254 a& + 1) -a& - 1) = 4(k - l)ak-z(n) 

while for odd k we find 

ak(n + 1, &to) -a& - 1, &U) = 4(k - l)ak-?(n, TU). (25b) 

However, the equivalent of the nonlinear relation (7) has not been found in the discrete case. 
Still, its existence would lead only to a practical simplification. The important point is that 
the z-functions (which are the fundamental objects) can be computed in an algorithmic 
way. In fact, instead of using the Backlund transform for U ,  equation (12). we can derive 
a Bgcicklund relation directly for the s-functions: 

(26) 

(27) 

Next, we tum to an important question concerning the comparison of the present results 
with those of our work on the Airy-type solutions of d-PII. In 1121 we obtained the bilinear 
expressions 

ZN+I?N-I = 2Vz?N1~ +?NrN(n - N - 2 nu2) 
- 
rN+IzN-I = 2 v z f N 4 ~ + ~ N ~ ~ ( N + n + 1 - 2 v 2 ) .  

and with the dependent-variable transformation 

p + I  " 
N + I ~ N  - 

s;+,r:+' 
wn = 

we obtain the standard nonlinear form of d-P[I: 

(2pn + (ZN - 1) + 2q)wn - (2N + 1)p 
%+I + w,-1 = 1 - w,' 

We remark that equation (K19) corresponds to a = (2N + 1)p while the a of equation 
(19) is - E ~ ( N  + 1). The interpretation of this value of a is the following. Equation (KW), 
and also (K15)-0(18), are written specifically for the case of Airy-type solutions, i.e. half- 
integer values of a/6 and the CN of (K18) is associated to a = (ZN + 1)p. In this paper, 
the formalism of (15a) and (b) is quite general and does not depend on the type of solution 
considered. (Only when rational solutions are considered does N have to be taken as an 
integer.) If we wish to compare the bilinear expressions (KlSHK17) and (15a) and (6). 
(26) and (27) we must take into account the shift in N. The simplest way to do this is to 
rewrite (K19) as 

(K19') 



Bilinear discrete Painlev641 and its particular solutions 3547 

Comparing (K19') to (19) we obtain p = -e3/2 = -l/2uz and q = 1 + N/2uZ. Next, 
let us remark that there exists a further small difference in the definitions of the 5's in the 
two papers: what is called r d m )  in 1121 corresponds i n  this paper to a r-function, which 
we will denote by K d m  + M - N - I), i.e. with the same lower index but with an upper 
index (m 4- M - N - 11, so that (K18) becomes identical to our equation (20). We can now 
rewrite (K15HK17) in terms of the K ' S :  

(28) 
"-1 n n-2 i+l n-I n 

K N + I K N - ~  ' K N  K N  - K N  K N  

Clearly, equation (29) involving only two consecutive lower indices is analogous to our 
equation (15~). The difference in form between these two equations can be explained by a 
gauge transformation between our 5's and the K'S.  Defining a gauge function h we put 

K G  = h;';. (31) 

In order for w. to coincide with U,  we must have h;~lh",l/hk+,h~ = 1. This can be 
integrated once to h;+' = h; j ( n  - N )  and then further integrated to h; = J ( n  - N ) @ ( N )  
such that j(m) = J(m + l)/J(m). Introducing the gauge h,  equation (29) down-shifted 
once in n becomes 

All the @'s factor out, and (32) coincides with (Ea) provided that a single relation which 
defines the gauge function j is satisfied 

N f l  - n  j ( n - N - 2 ) =  j(n-N) I +  ( 2vz (33) 

Next, we tum to (28): up-shift it once in n, introduce h and compare it to (26). We remark 
that thanks to (33) the ratio of the j ' s  creates exactly the right (n - N)-dependent terms in 
(26). We are left with one condition that defines +: 

Finally, one can check that (30) is now identical to (27). Thus, the two bilinear formulations 
of d-p, are equivalent, provided one introduces the right gauge. 

In this paper we have introduced a bilinear formalism for the description of the discrete 
Painlev6-II equation. This approach has turned out to be very convenient for the expression 
of the rational solutions that d-41 possesses for particular values of its parameters. From the 
analysis presented, it is clear that the choice of the appropriate gauge for the description of 
the equations depends crucially on the type of solutions one wishes to examine. The novel 
feature concerning the rational solutions of d-41 is that they can be given in the form of 
Casorati determinants, a property that is not yet fully explored even in the continuous case. 
We expect that the bilinear formalism will be extremely useful in the study of the remaining 
discrete Painlevt equations and will help establish a perfect parallel between the discrete 
and the continuous case. 
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